

From Tank-to-Wheel to Life Cycle Emissions

Joint Symposium Waseda University May 20, 2019

Prof. Dr. Uwe Dieter Grebe

" We came all this way to explore the moon, and the most important thing is that we discovered the Earth."

William Anders, Apollo 8 December 24, 1968

Source: NASA

Example: Li-Ion Battery Materials

Challenges:

- Destruction of sensible Ecosystems
- Hazardous Emissions
- Substandard working conditions

Cobalt washing at a small mine, Kongo

Actions for Sustainability:

- Ensure State-of-the-art process engineering
- Study & minimize ecosystem impact
- Implement EoL strategies & Material Recycling

Matanda Copper & Cobalt Mine, Kongo

Life Cycle CO₂

Life Cycle CO₂

Powertrain Competition Hurdles for Individual Technologies

CEI

City Access

Range, Weight

Perception

Cost,

Production

Cost

Infra-

structure

CO2-Emissions

Infrastructure

Well to Tank

The need for individual mobility will lead to a coexistence of different propulsion systems

-ero

Impact

Emission

Well to Tank

Neutral Fuel

ICE-based Powertrain with Zero Impact Emission

Internal Combustion Engines with zero impact on the air quality in cities are possible and reasonably affordable

On the way to Zero Impact Emissions

▲ Pollutant Emissions

EU6d	EU7	Zero Impact Emission SI and CI	
SI Limit	CI&SI		
of city part		 assist, electric drive-off Reduced Engine Raw Emission Refined Exhaust Gas Aftertreatment System e.g. secondary air, electrically heated catalyst, refined GPF Refined Control Strategies 	 Exhaust Gas Conversion Management Predictive Operation Strategies Passive SCR / NOx Storage Catalyst Secondary Air System
Aggravated RDE-Boundaries e.g.: reduced length	Technical Mitigation Eimited ICE Dynamics e.g.: torque limitation, electric torque	Significant Further Emission Reduction	

Hybridization as enabler for "Zero Impact Emission" capability of ICE

12,000 Product Cost in EUR

Significant aggravation of CAFE targets especially in EU and China

Technology Forecast - LD Vehicles 2030 New Vehicle Production – AVL "Most Likely "

AVL prediction 04/2019

*) incl. 48V with e-Drive

AVL of

What if Synthetic Fuels are available?

Power-to-X (E-Fuels)

- Feasible scenario Technologies are fundamentally established
- Storage to balance fluctuations from wind and solar
- Scale-up and infrastructure built-up need to be started soon to enable sizable volumes mid-term
- Will be in competition to other alternative renewable routes
 - (Hydrogen, Battery Electric)
- Aviation and ocean-going marine likely to be first in line for any liquid fuels

PtX Fuels are a favorable option to use as drop-in for existing fleet

Efficiency Chain: from Source to Wheel

Source: AVL

Real World EV Driving Range: A reliable Uncertainty

Percentage of max. electric range

Efficiency Chain: from Source to Wheel

Life Cycle CO₂

Vehicle Production GHG Emissions

Raw Material Extraction, Refining and Smelting needs to be included into assessment of Vehicle GHG Emissions. Recycling is a potential for GHG Reduction.

Vehicle Production GHG Emissions

Sources: AVL, FfE, University of Linz

C-Segment Vehicle

Values largely dependent on boundary conditions:

MHEV

20 t CO₂

"GHG lean" production for base Vehicle and ICE. Today "real world" values vary largely (up to 8 t/veh.)

BEV

Battery 60 kWh, US MI Electricity Mix, Production Best-Practice (140 kg CO_2/kWh)

Battery-related: Variation 62 to 212 kg CO_2/kWh , depending on battery manufacturing

FCEV

Fuel Cell Stack: 80kW

Carbon Fiber Hydrogen Storage, 5 kg capacity. Carbon Fiber Production Footprint 25 kg CO_2/kg (range is 20...31)

Battery Pack Production GHG Emissions

Battery Cell Production GHG Emissions

References: Kwade et al., Nature Energy (2018)

H. C. Kim et al. Env. Sci. (2016) C. Yuan et al. Manuf. Tech. (2017) L. Janschitz, AVL, Master Thesis (2018)

Fuel Cell Tank Production GHG Emissions

Type 4 Hydrogen Storage Vessel (AVL / OEM Specimen)

References

AVL Benchmark Data J.J. Cook, NREL Technical Report (2017) Toray technical data (T700 Fiber)

GHG Emissions for Vessel Manufacturing

2-vessel system, capacity 5 kg (usable) Vessels only, i.e. w/o valves, receptacle, PRD.

Production and Well-to-Wheel A long Use Phase to offset for Production

Use Phase and battery calendar life

German Car Fleet*:

- Average Age 9.4 y
- Annual Mileage 13922 km
- Many Cars (>28%) older than 15 years at EoL

t CO₂ GHG emissions Well-to-Wheel

*Kraftfahrt-Bundesamt, 03/2018

Modular Powertrain System

propulsion system

Modular Plattform Battery Electric and Range Extender Vehicle

Electric Vehicle-Range Extended Battery Electric Vehicle **Battery Electric Vehicle** 2 Battery Packs 3 Battery Packs

Evolution of Car Ownership (Scenario)

Gasoline or Diesel Main vehicle for universal use Variants of Electrification

400 km BEV (with limitations)

FCEV (Infrastructure & Cost issue)

AVL 00

Main Vehicle tailored to use case (e.g. commute)

200 km BEV = 99% of trips

Shared Car, bus, train, plane... = 1% of trips

Owned

Multi-Purpose ICE Vehicle

> Owned (with some shortfalls)

Owned + Shared

Summary

Sustainability in ecology, economy and society as the guiding principle

Zero impact emissions for internal combustion engines is reasonably affordable

GHG regulations drive a significant share electrification – however, the ICE plays an important role in the propulsion of future vehicles

PtX enables the use of renewable energy with ICE – drop-in capability preferred

GHG emissions from the production of batteries determined by energy used to manufacture

Minimized WtW GHG emissions can be achieved with smaller batteries – combined with range extenders, fuel cells or future intermodal mobility concepts

Thank You

Source: NASA