

早稲田大学/エイヴィエルジャパン株式会社 社会連携講座 「自動車用パワートレイン開発プロセスおよび開発手法」 シンポジウム

~Carbon Neutrality & Zero Emissions~

A Lithium-ion Cell Pseudo-Two-Dimensional Model using Real Driving Cycles

Kentaro Kishida Waseda University

2023年12月14日

- Background
- Previous research
- Objective
- Research method
- Experimental method
- Model construction
- Model calculation
- Conclusion

Vehicles need to be electrified to address environmental issues <Problems of electrification vehicle>

- ✓ Price
- ✓ Charging infrastructure, charging time
- ✓ Efficiency, Range

<Problems of improving efficiency>

- ✓ Heat source change
- ✓ Variety of temperature zones
- $\checkmark\,$ Increased complexity of thermal circuits

Thermal energy flow needs to be improved throughout the vehicle using MBD

<Problems of battery modeling>

- Third parties other than OEM and battery suppliers have difficulty obtaining battery data
- Increased number of tests due to a wide range of temperatures

3/23

 V_t

 R_2

 C_2

 R_1

 C_1

Short

Low

Background

Previous research

Antonio et al. ⁽³⁾atUniversidad Politécnica de Valencia have developed a method to identify battery P2D models from cell tests simulating transient driving cycles

<Problems of previous research and improvement>

 Problems:
 Battery cell or experimental data of cell must be obtained

 Improvement:
 Assuming model building from vehicle driving experiments

 Modeling heat exchange between battery cells and cooling system

<Objective> Battery P2D model construction based on vehicle driving tests

Research method

Research method

✓ Battery data was obtained by running tests on the University's vehicle test bench

Test vehicle specification ⁽⁴⁾			
2003 kg			
74 kWh			
Ethylene glycol 50 %			
AC Induction motor			
AC Permanent magnet synchronous motor			
450 km			

✓ Measured temperature distribution between cells in the direction of cooling water flow

Model construction

Overview of model

 T_{bat}^0 K :Battery pack initial average temperature

0 50 1 Time min

Chemical reaction at electrode

- $\checkmark\,$ From the literature, it was inferred that the anode was graphite mixed with SiOx
- $\checkmark\,$ The capacity is increased by mixing SiOx

Battery cell specification ⁽⁵⁾⁽⁶⁾			
Battery model	21700		
Diameter x Height mm	20.9 x 70.1		
Weight g	68.6		
Nominal Capacity Ah	4.60		
Energy Wh	16.6		
Cathode Material	NCA		
Anode Material	SiOx-C		

□ Cathode(Positive electrode) $LiNi_xCo_yAl_zO_2 \rightleftharpoons Li_{1-m}Ni_xCo_yAl_z + mLi^+ + me^-$

□ Anode (Negative electrode)

$$C_6 + yLi^+ + ye^- \rightleftharpoons Li_yC_6$$

 $\begin{array}{l} SiO + Li \rightarrow \frac{1}{4}Li_{4}SiO_{4} + \frac{3}{4}Si \quad (\text{Irreversible}) \\ \frac{1}{4}Li_{4}SiO_{4} + \frac{3}{4}Si + \frac{45}{16}Li^{+} + \frac{45}{16}e^{+} \rightleftharpoons \frac{1}{4}Li_{4}SiO_{4} + \frac{3}{4}Li_{3.75}Si \\ (\text{Reversible}) \end{array}$

✓ Mixing SiOx changes the approximate shape of OCV (Open Circuit Voltage) and capacity

P2D model⁽³⁾⁽⁷⁾

Governing equationSpecies conservation equation

$$\frac{\partial}{\partial t} [\varepsilon c_e] = \frac{\partial}{\partial x} \left(D_e^{eff} \frac{\partial c_e}{\partial x} \right) + \frac{1 - t_+^0}{F} j^{Li} \qquad \dots \text{Liquid}$$
$$\frac{\partial c_s}{\partial t} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(D_s r^2 \frac{\partial c_s}{\partial r} \right) \qquad \dots \text{Solid}$$

14/23

Charge conservation equation

$$\frac{\partial}{\partial x} \left(k^{eff} \frac{\partial \varphi_e}{\partial x} \right) + \frac{\partial}{\partial x} \left(k_D^{eff} \frac{\partial lnc_e}{\partial x} \right) + j^{Li} = 0 \cdots \text{Liquid}$$

$$\frac{\partial}{\partial x} \left(\sigma_e^{eff} \frac{\partial \varphi_s}{\partial x} \right) - j^{Li} = 0 \cdots \text{Solid}$$

Butler-Volmer equation $j^{IC} = a_{s}i_{0} \left(e^{\frac{\alpha_{a}F}{R_{u}T}\eta} - e^{\frac{\alpha_{c}F}{R_{u}T}\eta} \right)$

$$i_0 = \mathbf{k}(C_c)^{a_n}(C_c, max - C_s, surf)^{a_n} (C_{c,surf})^{a_p}$$

σ_e^{eff}	S/m	Effective solid-phase conductivity	
φ_s		Solid phase potential	
a_s	m²/m³	Volume specific reaction surface area	
k	A•m ^{2.5} /mol ^{1.5}	Reaction rate constant	

P2D model⁽³⁾⁽⁷⁾

□ Heat generation

$$\dot{Q}_{gen} = \dot{Q}_{rx} + \dot{Q}_{rev} + \dot{Q}_{ohm} + \dot{Q}_{c}$$

- ✓ Redox reaction heat generation $\dot{Q}_{rx} = \frac{1}{L} \int_{0}^{L} j^{Li} (\varphi_s - \varphi_e - U) dx$
- ✓ Ohmic heat generation

$$Q_{ohm} = \frac{1}{L} \int_{0}^{L} \left[\sigma_{e}^{eff} \left(\frac{\partial \varphi_{s}}{\partial x} \right)^{2} + k^{eff} \left(\frac{\partial \varphi_{e}}{\partial x} \right)^{2} + k_{D}^{eff} \left(\frac{\partial \ln c_{e}}{\partial x} \right) \left(\frac{\partial \varphi_{e}}{\partial x} \right) \right] dx$$

✓ Reversible heat generation

$$\dot{Q}_{rev} = \frac{1}{L} \int_0^L j^{Li} \left(T \frac{\partial U}{\partial T} \right) dx$$

 \checkmark Contact resistance heat generation

$$\dot{Q}_c = \frac{R_c}{A_s V_c} I^2$$

Temperature dependence of parameter
 ✓ Diffusion coefficient of solid phase

$$D_{s} = \frac{D_{s,ref}}{R} \exp\left(\frac{E_{D}}{R}\left(\frac{1}{T_{ref}} - \frac{1}{T}\right)\right)$$

✓ Reaction rate constant

$$k = k_0 \exp\left(\frac{E_k}{R} \left(\frac{1}{T_{ref}} - \frac{1}{T}\right)\right)$$

Q _{gen}	W	: Battery heat generation rate
\dot{Q}_{rx}	W	: Redox reaction heat generation rate
 \dot{Q}_{rev}	W	: Reversible heat generation rate
Qohm	W	: Ohmic heat generation rate
\dot{Q}_c	W	: Contact resistance heat generation rate
L	m	: Total layer longitudinal thickness
U	V	: Open circuit potential of the solid
A_s	m²	: Area of contact between solid phase and current collector
V_c	m³	Cell volume
D _{s,ref}	m²/s	: Diffusion coefficient of at reference temperature
E_{aD_s}	J/mol	: Activation energy for Li diffusion coefficient in solid phase
0,ref	m²/s	: Exchange current density at reference temperature
E_{ai_0}	J/mol	: Activation energy for exchange current density
T _{ref}	K	: Reference temperature

Cell balancing

- ✓ OCV is defined by cathode and anode OCP(open circuit potential) balance
- $\checkmark\,$ OCP vs Stoichiometry curve is obtained from the literature
- ✓ Parameters that define cell balance were identified before transient calculation

Parameter identification flow

Identified parameters

Each parameter was set within the range of the minimum and maximum values obtained in the literature.

18/23

Doromotor	Symbol	Lloit	Cathode	Separator	And	ode
Farameter	Зушьог	Unit	NCA		C ₆	SiO
Thickness	$t_{cat}, t_{sep}, t_{ano}$	μm	94	13	9	6
Particle size	r_{NCA}, r_C, r_{SiO}	-	3.6	-	18	9.7
Reaction rate constant	$k_{0,NCA}, k_{0,C}, k_{0,SiO}$	m ^{2.5} /(mol ^{0.5} s)	9.6 × 10 ⁻⁸	-	1.3 × 10 ⁻⁹	1.4 × 10 ⁻¹²
Diffusion coefficient of solid	$D_{s,NCA}, D_{s,C}, D_{s,SiO}$	m²/s	2.1 × 10 ⁻¹⁴	-	1.1 × 10 ⁻¹³	8.9×10 ⁻¹²
Activation energy of diffusion coefficient	E_D^{NCA} , E_D^C , E_D^{SiO}	kJ/mol	1.8	-	47	17
Activation energy of reaction rate constant	E_k^{NCA} , E_k^C , E_k^{SiO}	kJ/mol	20	-	8.6	13
Contact Resistance	R_{cat} , R_{ano}	$\Omega \cdot m^2$	8.6×10-4	-	8.6×	< 10 ⁻⁴
Porosity	$\epsilon_{cat}, \epsilon_{sep}, \epsilon_{ano}$	-	0.20	-	0.2	21
First charge capacity	q_{fcc}^{NCA} , q_{fcc}^{C} , q_{fcc}^{SiO}	mAh/g	225	-	372	2592
First discharge capacity	q_{fdc}^{NCA} , q_{fdc}^{C} , q_{fdc}^{SiO}	mAh/g	206	-	329	1842
SiO mass fraction	m _{SiO}	-	-	-	-	0.040
Maximum potential	U_{max}^{cat}	V	4.2	-	-	-
OCV at SOC 100 %	U ^{cell} ₁₀₀	V	4.2			
OCV at SOC 0 %	U ₀ ^{cell}	V	2.3			

Identified parameters

- Water pump never stopped
 - after turning on the vehicle
- Battery cells were heated throughout the test.
- P2D model results
 - (3) Temperature calculation accuracy deteriorated after 20

Model calculation results			
	Voltage	Temperature	
RMSE	0.019 V	1.2deg.C	
Max. error rate	1.5%	9.8%	
Max error @ battery pack Cell voltage × 96	6.1 V	-	

Model calculation analysis

Problem of heat generation at low SOC

$$\dot{Q}_{gen} = \dot{Q}_{rx} + + \dot{Q}_{ohm} + \dot{Q}_c + \dot{Q}_{rev}$$
$$\dot{Q}_{gen} = I(V_{OCV} - V_t) + IT \frac{dV_{OCV}}{dT}$$

Total heat generation due to overvoltage matches if terminal voltage calculations match

Reversible heat generation \dot{Q}_{rev} is the cause of the temperature error.

One of the following improvements is needed

✓ SiO-C anode dU/dT map

✓ Cell balancing of anode and cathode

In this study, we tried to construct a battery P2D model based on vehicle driving tests. As a result, the following findings were obtained.

Conclusion

- By adding a heater and chiller circuit outside the vehicle, it was possible to measure the pressure drop and identify the model under steady-state conditions. It was also possible to estimate the heat capacity and natural convection heat transfer coefficient.
- P2D model identification of battery cells using vehicle driving test results is possible by modeling heat dissipation from battery cells to cooling water and to the atmosphere.
- The model can be calculated with an error of up to 2.7 % for voltage and 9.8 % for temperature.

- (1) IEA, "Car market share by powertrain in selected countries and globally, in the Stated Policies Scenario and the Sustainable Development Scenario, 2019, 2030 and 2050",https://www.iea.org/data-and-statistics/charts/car-market-share-by-powertrain-in-selectedcountries-and-globally-in-the-stated-policies-scenario-and-the-sustainable-development-scenario-2019-2030-and-2050, 2021, 2023/4/17
- (2) Jan Christoph Menken, Klaus Strasser, Thomas Anzenberger, and Christian Rebinger, "Evaluation of the Energy Consumption of a Thermal Management System of a Plug-In Hybrid Electric Vehicle Using the Example of the Audi Q7 e-tron", SAE international, 2018, 06-11-03-0017
- (3) Antonio García, Javier Monsalve-Serrano, Alberto Ponce-Mora, ´Alvaro Fogu´e-Robles,
 "Development of a calibration methodology for fitting the response of a lithium-ion cell P2D model using real driving cycles", ELSEVIER, Energy 271 (2023)
- (4) Munro, "2020 Tesla Model Y Cost Analysis Zone 4: Powertrain & Battery Pack", 2020
- (5) BATEMO, "PANASONIC TESLA MODELY", <u>https://www.batemo.de/products/batemo-cell-library/panasonic-tesla-model-y/#get-data-popup</u>, 2023/10/04
- (6) Anastasiia Mikheenkova, Alexander J. Smith, Kristian B. Frenander, Yonas Tesfamhret, Niladri Roy Chowdhury, Cheuk-Wai Tai, Torbjörn Thiringer, Rakel Wreland Lindström, Maria Hahlin1, Matthew J. Lacey, "Ageing of High Energy Density Automotive Li-ion Batteries: The Effect of Temperature and State-of-Charge"
- (7) Gamma Technology, "AutoLion Electrochemical Lithium-ion Battery Model"
- (8) Kieran O'Regan, Ferran Brosa Planella, W. Dhammika Widanage, Emma Kendrick, "Thermalelectrochemical parameters of a high energy lithium-ion cylindrical battery", Elsevier, 2022